
©Copyright 2022

Christian Dunham

Adversarial Trained Deep Learning Poisoning Defense:

SpaceTime

Christian Dunham

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2022

Committee:

Geetha Thamilarasu

Brent Lagesse

Afra Mashhadi

Program Authorized to Offer Degree:

Computing and Software Systems

University of Washington

Abstract

Adversarial Trained Deep Learning Poisoning Defense:
SpaceTime

Christian Dunham

Chair of the Supervisory Committee:

Geetha Thamilarasu

Department of Computing and Software Systems

Smart homes, hospitals, and industrial complexes are increasingly reliant on the Internet of

Things (IoT) technology to unlock doors, regulate insulin pumps, or operate critical national

infrastructure. While these technologies have made tremendous improvements that were not

achievable before IoT, the increased the adoption of IoT has also expanded the attack surface

and increased the security risks in these landscapes. Diverse IoT protocols and networks

have proliferated allowing these tiny sensors with limited resources to both create new edge

networks and deploy at depth into conventional internet stacks. The diverse nature of the

IoT devices and their networks has disrupted traditional security solutions.

Intrusion Detection Systems (IDS) are one security mechanism that must adopt a new

paradigm to provide measurable security in this technological evolution. The diverse resource

limitations of IoT devices and their enhanced need for data privacy complicates centralized

machine learning models used by modern IDS for IoT environments. Federated Learning

(FL) has drawn recent interest adapting solutions to meet the requirements of the unevenly

distributed nodes in IoT environments. A federated anomaly-based IDS for IoT adapts to

the computational restraints, privacy needs, and heterogeneous nature of IoT networks.

However, many recent studies have demonstrated that federated models are vulnerable

to poisoning attacks. The goal of this research is to harden the security of federated learning

models in IoT environments to poisoning attacks. To the best of our knowledge poisoning

defenses do not exist for IoT. Existing solutions to defend against poisoning attacks in other

domains commonly utilize different spatial similarity measurements from Euclidean Distance

(ED), cosine similarity (CS), and other pairwise measurements to identify poison attacks.

Poisoning attack methodologies have also adapated to IoT causing an evolution that

defeats these existing defensive solutions. Poisoning evolution creates a need to develop

new defensive methodologies. In this we develop ST-DSD a deep learning recurrent neural

network that uses a four dimensional spacetime manifold to distinguish federated partici-

pants. ST-DSD is built upon a time series regression many-to-one architecture to provide

an adversarial trained defense for federated learning models. Simulation results shows that

ST-DSD exceeds the previous solutions for Byzantine and Sybil label flipping, backdoor, and

distributed backdoor attacks in an IoT environment.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

Glossary . v

Chapter 1: Introduction . 1

1.1 Background . 3

Chapter 2: Related Works . 9

2.1 Poisoning Attacks and Defense . 9

2.2 Similarity Defenses . 10

Chapter 3: Proposed Design . 12

3.1 Motivation . 12

3.2 Defense Model . 14

3.3 Defense Methodology . 20

3.4 Contributions . 26

Chapter 4: Experiment Design . 27

4.1 Dataset . 27

4.2 Intrusion Detection System Architecture . 29

4.3 Threat Model . 29

4.4 Experiment Methodology . 35

Chapter 5: Evaluation . 37

5.1 Evaluation Metrics . 37

5.2 Results . 38

i

Chapter 6: Conclusion . 53

Bibliography . 54

ii

LIST OF FIGURES

Figure Number Page

1.1 Data Poisoning in Machine Learning . 2

1.2 3-Layer IoT Architecture Model . 4

1.3 Traditional Network Security Model . 6

1.4 Federated Learning Model with Internet of Things Clients 7

2.1 Various Similarity Measures in Earlier Defenses 10

3.1 Participant Identification through Spacetime Manifold 14

3.2 ST-DSD Cloud Deployed Architecture . 15

3.3 Cosine Similarity of Sybils . 17

3.4 LSTM Cell with Input Gates . 22

3.5 Bidirectional LSTM Forward and Backward Propagation 24

3.6 ST-DSD Deep Neural Network Architecture 25

4.1 Sybil Label Flipping Methodology . 31

4.2 Byzantine Label Flipping Methodology . 32

4.3 sybil Backdoor Methodology . 33

4.4 Sybil DBA Methodology . 34

5.1 IDS Baseline Accuracy with no Attacks . 39

5.2 ST-DSD Model Accuracy and Loss . 40

5.3 Model Convergence Demonstrated with both Loss and Accuracy 42

5.4 Byzantine Model Convergence Failure . 43

5.5 Byzantine Defense precision Comparison at 50% >= Attack Rate 45

5.6 Label FLip Defense Precision Comparison at 50% >= Attack Rate 46

5.7 Backdoor Defense precision Comparison at 50% >= Attack Rate 47

5.8 Collective Precision at 50% >= Attack Rate 48

5.9 Individual Defense Precision against DBA at 50% >= Attack Rate 49

5.10 IDS Diminished Accuracy . 50

iii

LIST OF TABLES

Table Number Page

4.1 ST-DSD Data Training Set Example . 28

4.2 IDS Model Summary . 29

5.1 IDS Accuracy Impacts from Various Attacks 41

5.2 Poison rate Effects on Accuracy . 44

iv

GLOSSARY

ATTACK RATE: The ratio of attackers to honest clients in an experiment.

BACKDOOR ATTACK: A poisoning attack where the attacker constructs a ’backdoor’ to
the models output by attacking a set of parameters (trigger) that will control the
prediction of the model for that trigger while not affecting the models convergence of
other parameters.

BI-DIRECTIONAL LONG-SHORT TERM MEMORY (BI-LSTM): An LSTM that that trains on
the input sequence with two LSTMs. The first LSTM trains on the sequence as-is, the
second trains on a reversed copy of the input sequence.

CONVERGENCE: The values of a process that have a tendency in behavior over time.
Often time measured through model loss or accuracy.

DENSE LAYER: A neural network layer where each neuron receives input from all the neu-
rons in the previous layer. Dense layers perform matrix-vector multiplication. Dense
layers have a fixed vector output.

DISTRIBUTED BACKDOOR ATTACK: A backdoor attack that further breaks the trigger of
the backdoor attack down to several separate ’sub-triggers’ to avoid detection while
still achieving creating a backdoor to the models prediction.

FEDERATED LEARNING (FL): Machine learning method that enables machine learning
from different data sets originating from distributed locations without sharing data.

INTERNET OF THINGS (IOT): Networking capability that allows information to be sent
and received from sensors and objects such as smart lights, and medical devices.

INTRUSION DETECTION SYSTEM (IDS): An application that monitors network traffic and
logs threats and or suspicious activity.

LABEL FLIP ATTACK: A poisoning attack in which the attacker changes the class labels
of their portion of the data set.

v

LONG-SHORT TERM MEMORY (LSTM): Cells or blocks of an RNN that utilize a series of
gates to simulate human thought. LSTMs are capable of learning which information
to hold and carry forward (long term) as well as the typical RNN feedfoward short
memory. This also allows LSTMs to decide which information is lacks the importance
to remember and carry forward.

POISONING ATTACK: An adversarial method to corrupt the data used in machine learning
with the end goal of manipulating the models convergence.

POISON RATE: The ratio of accepted poison weights to accepted honest client weights by
the machine.

RECURRENT NEURAL NETWORK: An artificial neural network that can process sequen-
tial data, recognize patterns, and predict a final output. RNNs are recurrent and dif-
ferent from other neural networks in that they can repeatedly perform the same task
on a sequence of inputs. RNNs have been historically used to solve speech recognition
and natural language problems.

TIMEDISTRIBUTED DENSE LAYER: A neural network layer that applies the computations
of that layer to each output of the sequence.

vi

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to University of Washington at Bothell,

where he has had the opportunity to work with Dr. Geetha Thamilarasu, Dr. Lagesse, and

Dr. Mashaddi. This journey would not have been possible without Suzanna Martinez for her

constant counsel and advise. The following faculty instilled a passion for problem solving:

Dr. Stiber, Dr. Dimpsey, Dr. Dupuis, and Dr. Si.

De Oppresso Liber

vii

DEDICATION

to my family: Flora, Arturo, and Sofia – for your support and sacrifice.

viii

1

Chapter 1

INTRODUCTION

The Internet of Things (IoT) ecosystem has rapidly expanded into mainstream facets

of our daily lives, industrial process, and critical national infrastructure resulting in much

research in current years. RFID and IPv6 birthed a heterogenous device race that Kevin

Ashton minted as the ‘Internet of Things to describe the ubiquitous sensors in 1999 [17]. Since

then, IoT devices have been incorporated into applications from smartwatches to implanted

medical actuators. The sensors utilize Bluetooth, cellular connections, or Zigbee protocols

designed for low-powered processors [48]. IoT applications often connect to cloud servers for

data storage, processing, and analysis [1]. Traditional security solutions need to be modified

to address new challenges in the IoT paradigm.

Intrusion Detection Systems (IDS) have been used with centralized machine learning to

address security concerns in conventional internet models. There is significant interest in de-

veloping new archetypes of these existing security systems to address the IoT challenge. One

area of recent interest is Federated Learning (FL). FL is a new paradigm of machine learning

that mitigates storage capacity limitations and data privacy concerns for the ubiquitous IoT

sensors with heterogeneous resource limitations.

FL was introduced in 2016 by Google to address machine learning where data was un-

evenly distributed over a large set of nodes [21]. However, federated learning models present

two significant challenges pertaining to IDS for IoT. One challenge is that most IoT net-

works create non-independent and identical datasets, Non-IID, due to their ubiquitous and

heterogenous nature. Non-IID is a problem because it causes model accuracy to decrease by

55% [19].

The second challenge is that federated learning is vulnerable to adversarial attacks. One

2

attack that significantly affects federated models is the poisoning attack. A poisoning attack

is when a malicious client entity can provide local training weights that corrupt the global

model located on a centralized server. See Figure 1.1: Data Poisoning in Machine Learning

below. On the left side of the figure the honest client data at the top of the image is filtered

into the machine learning model. There the data is processed and trains the machine. The

output is a model with a successful learning rate.

Figure 1.1: Data Poisoning in Machine Learning

On the right side of figure 1.1, poisoned data in red is utilized by a malicious client. The

3

data is accepted by the model for processing and training. The end result is a model that

fails to learn or meet desired convergence metrics.

This has created an urgent need to develop poisoning defenses. There exists a broad

gap in poisoning defenses in relation to intrusion detection systems and federated learning

models. The few defenses from centralized models have framed poison identification as either

a two or three dimensional classification problem to be solved with spatial metrics to contrast

honest clients from poison attackers. These defenses have missed critical information that

should be included into the problem framing for poison attacker identification. Poisoning

attacks exist in random sequences of time. This creates the need for a four dimensional

solution that uniquely solves individual classification prediction from a random sequence

over a given time period.

This ST-DSD report contributes a four dimensional neural network that can accurately

receive input from the time dimension as an additional feature when comparing local model

updates through the lens of spatial distance similarity. This is the first report to utilize a

Bi-Directional Long-Short Term Memory (Bi-LSTM) Recurrent Neural Network (RNN) with

a deep stacked TimeDistributed Dense layer allowing more efficient random sequence predic-

tions in that four dimensional manifold. Additionally, we contribute four attack methodolo-

gies for poisoning a federated intrusion detection system. Finally, we explore with the need

for future work an anomaly based federated IDS for IoT using a similar deep neural network.

To the best of our knowledge, this is the first report that examines poisoning attacks in a

federated IDS for IoT that frames the problem through the lens of spacetime.

1.1 Background

1.1.1 Internet of Things

IoT architecture can be generalized in a 3-layer model: application layer, network layer,

and perception layer [48], [1]. IoT devices vary from sensors, RFID tags, actuators, smart

phones, and other devices. These devises often use one or more of the following technologies:

4

Ipv6, RPL, 6LoWPAN, UMTS, Wi-Fi, and Bluetooth. The result is that IoT networks are

heterogenous themselves. Figure 1.2: 3-Layer IoT Architecture Model demonstrates this

generalization.

Figure 1.2: 3-Layer IoT Architecture Model

The top layer of the figure demonstrates the various applications that have driven IoT

device saturation in our current ecosystem. One of the most important conlcusions from this

figure comes from Network Layer and Perception layer. The network layer consists of many

different protocols that allow for different communication architectures by the multifarious

devices in the perception layer. The varying nature of IoT devices and their network deploy-

ments creates new challenges for the IoT paradigm. Privacy and security are two of those

5

challenges facing this architecture [31].

1.1.2 IoT Security

IoT Security (IoTSEC) presents a unique set of problems due to the growth of IoT popu-

larity, and the diversity of deployment configurations in IoT networks. The Congressional

Research Service (CRS), a nonpartisan shared staff, predicted the expansion of IoT sensors

from 9.9 billion in 2019 to 21.5 billion in 2025 [13]. This doubling of IoT devices will pro-

vide ubiquitous targets in critical national infrastructure, industrial (IIoT) settings, medical

(IoMT) settings, smart cities, and smart homes. IoT networks are complex often creating

cross-device dependencies which expands the attack surface of the IoT network [50]. This

increased attack surface aggravates the security concerns related to the pervasive presence

of sensors. The result of IoT expansion and the rise of these security concerns is the need to

examine mechanisms to secure this unique ecosystem.

Traditional security practices are insufficient for IoT devices. The modern security ecosys-

tem consists of static perimeter network defenses (Firewalls), end-host defenses (Antivirus),

and software patches [50] as seen in Figure 1.3: Traditional Network Security Model.

IoT devices disrupt the static perimeter defenses due to their omnipresence and the

cross-device dependencies. Further, host-based solutions do not address the limited resources

available to the IoT devices. Finally, IoT devices are routinely delinquent of routine patching

protocols [31]. These challenges require adapting traditional security practices to address the

disruption caused by IoT.

1.1.3 Intrusion Detection Systems

Intrusion detection systems (IDS) are one mechanism that has helped secure traditional

networks by monitoring systems or networks for malicious activity or policy violations [3,20,

34, 38, 40, 41, 43, 44]. In recent years, machine learning is increasingly used to build reliable

and more effective intrusion detection systems. However, the IoT security challenges present

unique hurdles for IDS using machine learning. One of the issues in IoT is that traffic and

6

Figure 1.3: Traditional Network Security Model

data is created at the edge of the network. The networks are not centralized and there are

no guarantees of data distribution or independence. Further, the storage capacity of low

powered IoT devices limits the data that can be stored on the device for data processing.

Since these devices are low powered, computationally intensive security measures such as

cryptography cannot be directly applied to secure IoT environments. This is a challenge

that requires the machine learning intrusion detection archetype to adapt for IoT.

1.1.4 Federated Learning

Federated learning is an adaptation that shows promise in overcoming the distribution and

independence challenges created in IoT. FL creates a centralized model that prevents data

leakage and improves security by keeping the training data private to the individual nodes.

One area incorporating FL is intrusion detection [9, 23, 25, 29, 30, 32, 36, 37, 49]. This is

demonstrated in Figure 1.4: Federated IDS with IoT Clients. A centralized global model

accepts inputs from the pervasive IoT nodes, and then aggregates the individual weightings

updating the distributable version.

7

Figure 1.4: Federated Learning Model with Internet of Things Clients

One hurdle that must be overcome for FL IDS is the vulnerability to poisoning attacks. A

federated model allows the local client to train the global model with local data and upload

the updated weights to be aggregated. There exists an attack vector for malicious actors to

upload corrupted models to negatively impact the convergence of the global system.

8

1.1.5 Poisoning Attacks

Byzantine and Sybil attacks are two types of poisoning attacks. Both attacks may use mul-

tiple attackers, however they differ in their end goal. Byzantine poisoning attacks cause

convergence failure of the final model. Achieving optimum performance is defined as con-

vergence. Convergence is most often measured by model loss. Model loss is a penalty for

incorrect predictions. The penalty can be applied through many formulas such as mean

squared error. When a model achieves convergence with 50% of the participants being

malicious, it is considered Byzantine resistant [26]. Byzantine attacks are constructed by

implementing workers who behave randomly or are untargeted attacks. In The random in-

put of the Byzantines degrades the model. Sybil methodologies do not attempt to prevent

convergence of the global model. Instead, Sybils focus on targeting the convergence output

of certain classes of the model [14]. Therefore Sybil attacks are considered targeted attacks.

There exists limited research on addressing such adversarial attacks on the system [2,10,

16, 22–24, 27, 39, 42, 45, 51, 52]. Poisoning defenses have primarily focused on imaging data

sets in traditional ML models. This thesis researches the defense impacts against poison

attacks on a novel anomaly-based intrusion detection for IoT using federated learning. First,

we construct a federated anomaly-based IDS for IoT, and then we devise several poisoning

attacks to affect the global weights for different gradients. We then implement a bidirectional

LSTM Recurrent Neural Network to examine spatial relationships between the different

local gradient updates. Our LSTM implements a many-to-one regression architecture that

examines several distance based pairwise similarities between the vectorized gradients of each

local model batch through a dimension of time.

9

Chapter 2

RELATED WORKS

The existing solutions for poisoning defenses generally utilize an individual similarity

measurement. Each solution has demonstrated some strengths of that measurement with

respect to specific attacks of that study. However, the existing solutions do not present a

suitable defense against the modern evolution of data poisoning attacks.

2.1 Poisoning Attacks and Defense

Current published work for poisoning attacks is primarily limited to centralized learning

paradigms [4, 23, 25, 32, 37, 39, 49, 51]. However, due to the promising results of early FL

studies, there is a growing awareness of the vulnerability that FL has to adversary machines

corrupting the global model with localized training weights [42]. A second study verified FL

vulnerabilities in two poisoning attacks: label flipping and backdoor attacks [51].

In response, there is a small but growing base of poisoning defense research. [51] and [6]

studied Euclidean Distance in Sybil an Byzantine attacks. Next, cosine similarity related

to targeted training set attacks produced a state of the art defense in [14] and [16]. There

have been several studies that utilize cryptography to secure FL models from poisoning.

[23], [22], and [27] all explored defenses using Single key, Homomorphic Encryption, and

Multi-party computation. Despite the growing interest in poisoning attacks, there exists

very limited information on poisoning attacks in a federated learning environment for IoT

intrusion detection.

10

2.2 Similarity Defenses

Federated poisoning defenses present many gaps and assumptions due to the infancy of

the federated learning (FL) paradigm. Poisoning attacks create mathematical signatures

due to their effect on the machine learning model. These measurements are depicted in

Figure 2.1: Various Similarity Measures in Earlier Defenses. Specifically, the product of

global aggregation from the local weights creates these mathematical similarities. Recent

studies have examined the global model’s measure of change through cosine similarity, Eu-

clidian distances, triangle area similarity and sector area similarity(TS-SS), and logits to

identify poisoning attacks [52], [16], [18]. Hammoudeh and Lowd assumed that by focusing

on cosine similarity gradients, their attack agonistic approach would apply even to zero-day

attacks [16]. However, the authors in [47] were capable of defeating the gradient-based poi-

soning defense. Additional studies [15] and [35] also defeated gradient-based defenses with

a distributed backdoor poisoning attack.

Figure 2.1: Various Similarity Measures in Earlier Defenses

11

Heidarian and Dinneen focused on Euclidian distance and magnitude differences to pro-

duce better purity in document clustering similarities with the TS-SS algorithm [18]. This

work was then adapted for novel instrumentation by Birchman to provide resistance to

distributed backdoor attacks in an algorithm called Area Similarity FoolsGold – ASF [5].

Birchman’s work incorporated Heidarian’s triangle area and sector area similarity work into

the FoolsGold algorithm. ASF replaced the gradient defense with Euclidian distance and

magnitude difference. The difference resulted in better functioning of the honest client par-

doning. However, the implementation reduced the accuracy of identifying Sybils. Birchman

still achieved a better convergence measured by loss when poisoned by DBAs, largely due to

honest client pardoning.

Zhang et al. identified that the local models of attackers and benign participants had

significant differences in the diversity of their output logits [52]. The FoolsGold algorithm

also adopted logits; however, they were used to protect low-scoring honest clients with a

gradient less than 0. When incorporated to identify poisoning attacks in all the studies, cosine

similarity identifies Sybils most accurately. Birchman’s ASF implementation of FoolsGold

achieves higher model accuracy in DBAs. Finally, FoolsGold achieves the highest Sybil

identification accuracy in label and backdoor attacks.

This research aims to achieve the backdoor Sybil identification strength of cosine simi-

larity, the DBA convergence hardening of ASF, and the Byzantine prowess of multi-Krum

in one state-of-the-art neural network. We assume that the non-IID nature of IoT networks

includes spacetime relationships that require a deep learning archetype capable of utilizing

human-like memory to identify spatial similarity patterns over time sequences provided by

poisoning participants that can better predict these malicious attackers. That prediction

can be increased if the model is able to propogate data from past to future, and from future

to past. We present this model as ST-DSD and test it against various attacks in an IoT

network.

12

Chapter 3

PROPOSED DESIGN

To study poisoning defenses we explored different poisoning attacks and implemented

four novel attacks. Those attacks cover the historical evolution of poisoning attacks to the

current model. Our thesis aims to provide a solution to these specific attacks. We propose

SpaceTime - Deep Similarity Defense, ST-DSD, to secure federated learning models in an

IoT environment from poisoning attacks.

3.1 Motivation

The primary purpose of this thesis is to explore mathematical means to harden federated

IoT IDS models against poisoning attacks from malicious participants. The ST-DSD logic

is based on three assumptions:

3.1.1 Poison Attacks shift towards multiple or distributed attackers

[14], [15], [5] all demonstrate a shift in focusing on the increased success rates created by

distributed Sybil and Byzantine attacks as seen in [8] and also evidenced in the Multi-Krum

defense [6]. This assumption encourages ST-DSD to examine spatial and time relationships

between multiple attackers.

3.1.2 Multiple or distributed attackers create clustered signatures

[14], [51], [8], and [15] demonstrate clustering through different measures of spatial similarity.

Sybil participants in Backdoor attacks exhibit significant gradient similarities. DBAs create

a pronounced magnitude difference of individual gradients because they focus each attacker

13

on a single weight’s convergence. ST-DSD includes gradient and distance-based similarity

features to provide comprehensive protection to the various attacks.

3.1.3 Poisoning defenses for federated IoT IDS are a spacetime problem

The vectorized distances from the local batches can be described using Pythagorean theorem

where (△Distance)
2 = (△x)2 + (△y)2 + (△z)2. These are the first three dimensions in

spacetime. Those spatial measures could be handled by most machine learning models.

However, distributed attackers may be presented in different time continuum’s. Let ’c’ be

the constant speed of light, ’t’ be time, and then the △ct = c△t in ct-coordinate. This

creates the three + one dimension of space time where △Spacetime = spatial time. Then,

spacetime is defined as (△Spacetime)
2 = (△ct)2 − (△x)2 − (△y)2 − (△z)2. In the context of

this research Figure 3.1: Participant Identification through spacetime Manifold graphically

depicts this manifold.

The red clients are attackers and the blue clients are benign. The individual red and

blue clients may or may not be, or have relations with, the same client in a different time

frame. The cube represents time from the bottom row to the top. The number of clients

is represented in the width. While graphically depicted as uniform, the number of clients

could be jagged. The individual clients poses distance and time relationships. A Long-Short

Term Memory Recurrent Neural Network can solve spacetime problems due to their archi-

tecture allowing the implementation of timesteps. The ability to include long-term memory

may help a model contextualize points in the three + one dimension of space and time to

identify attackers. This assumption drove this research to implement a novel bidirectional

LSTM model to evaluate poisoning defenses in a federated environment through the problem

description of spacetime.

14

Figure 3.1: Participant Identification through Spacetime Manifold

3.2 Defense Model

3.2.1 Defense Architecture

This research builds an LSTM Recurrent Neural Network using the many-to-one regression

architecture for poisoning detection based upon multiple mathematical similarities named

15

ST-DSD. ST-DSD integrates as a component to a federated IDS for IoT. Architecturally,

ST-DSD is a micro-service that receives the local gradients prior to the global model. Figure

3.2: ST-DSD Cloud Deployed Architecture shows ST-DSD as the poison detection icon.

After predicting the local weights, ST-DSD passes the honest client gradients to the global

model for aggregation.

Figure 3.2: ST-DSD Cloud Deployed Architecture

ST-DSD computes five similarities, a density distribution, probability, and dispersion for

each set of vectorized updated local gradients. The system extracts the product of triangle

area similarity (TS) and sector area similarity (SS) referred to as Area Sector FoolsGold

(ASF), cosine similarity (CS), Manhattan Similarity (MS), Euclidean Distance (ED), Jaccard

Similarity (JS), normalized distribution, inverse logits, and standard deviation from each of

the local models per update batch. ST-DSD then uses a stacked bidirectional LSTM model

16

with timesteps to create predictions. Next, ST-DSD passes that prediction to the aggregation

algorithm of the IDS. The IDS will not aggregate the local models that ST-DSD predicts as

poison attacks.

3.2.2 Defense Framework

The ST-DSD defense is based upon adapting theorems of similarity to identify poisoning

attacks in federated learning IDS models. These are included as the features to our neural

network. The distance between two points in a two-dimensional plane is known as Euclidean

Distance. ED helps detect byzantine attacks. Let us consider the points A(x1, y1) and

B(x2, y2) and let ED = distance.

Then ED is derived:

ED =
√

[(x2 − x1)2 + (y2 − y1)2] (3.1)

Manhattan Distance (MD), is the distance between two vectors also known as city blocks.

It is equal to the one-norm of the distance between the two vectors. MD is commonly used

in regression analysis to find straight lines. MD can be derived through the sum of absolute

differences. MD of A⃗ and B⃗ where A⃗ = [a,b,c] and B⃗ = [d,e,f]:

MD = |a− d|+ |b− e|+ |c− f | (3.2)

The cosine similarity is the foundation of the defense as implemented in FoolsGold [15].

Cosine similarity is a metric that describes the cosine of the angle between two vectors

projected in a multi-dimensional space. Cosine similarity can be used to describe likeness

irrespective of magnitude. This is important in poisoning attack similarity as client-side

hyper-parameters can modify magnitude.

When given two vectors, A and B, the cosine similarity, cos(θ) can be represented as the

dot product and magnitude where Ai and Bi are components of vector A and B:

cos(A⃗, B⃗) =

∑n
i=1A(i) ·B(i)

|A⃗ · |B⃗|
(3.3)

17

The resulting range is -1 to 1, whereas -1 means precisely the opposite, 0 indicates orthog-

onality, and values in between indicate similarity. Cosine similarity in poisoning attacks is

graphically represented in Figure 3.3: Cosine Similarity of Sybils. The honest client vectors

in blue push closer toward the global model and the actual objective, and they are dissimilar

to the cos(θ) of the red Sybil gradients.

Figure 3.3: Cosine Similarity of Sybils

Triangle Area Similarity (TS) considers the angle, Euclidean distance, and the magnitude

of a client’s vectors. The authors of [18] argue that the resulting output is a more robust

similarity metric. The TS logic is that two triangles are similar if they have the same

shape, not necessarily the same size. This means their angles are equal, and their sides are

proportional. If one of the two conditions, angle equality or proportionality, are true – the

other condition is inevitably true.

18

Using the SAS (Side Angle Side) formula to calculate the area of a triangle includes the

length of two sides and the Sin of the included angle. In this instance, A and B represent

vector updates.

TS(A⃗, B⃗) =
|A⃗| · |B⃗| · sin(θ′)

2
(3.4)

The triangle area similarity equation decreases proportionally as the vectors approach

each other, and the overlap of vectors will cause the formula to fail. Theta prime is deter-

mined by the arccosine of cos(A⃗, B⃗) + 10 to prevent this edge case.

This minor adjustment prevents overlapping vectors from false readings where theta prime

is determined:

θ′ = cos−1(V⃗) + 10 (3.5)

However, TS accuracy can still fail when specific parameters for angle and Euclidean

distance are met. Therefore, TS is not robust enough to produce accurate similarity due to

some missing components.

Sector area similarity (SS) balances the triangle area similarity by considering magnitude

differences in client vectors, and this allows for measuring an area between two vectors with

a different perspective. The sector area similarity equation is the summation of magnitude

difference and Euclidean difference squared with an angular rotation.

SS(A,B) = π · (ED(A,B) +MD(A,B))2 · (θ′

360
) (3.6)

Heidarian et al. proposed multiplying TS and SS in a TS-SS algorithm to provide clus-

tering of documents based on similarity [18]. The TS-SS formula multiplies TS·SS and is

presented where TS − SS(A,B) is defined:

|A⃗| · |B⃗| · sin(θ′) · θ′ · π · (ED(A,B) +MD(A,B))′

720
(3.7)

TS-SS outputs a set from 0 to ∞ where 0 is only achieved when Euclidean distance is

equal to Magnitude Difference (MD), where MD is:

MD(A,B) = |

√√√√ k∑
n=1

A2
n −

√√√√ k∑
n=1

B2
n| (3.8)

19

The output strictly focuses on the relationship between Euclidian distance and magnitude

difference. While the magnitude of a singular local weight may be a better defense against

DBAs, as demonstrated by [5], label flipping and traditional backdoor attacks have shown

affinity towards angle similarity value. During our defense methodology we refer to this

formula as ASF due the implementation incorporating Birchman’s adoption of the FoolsGold

pardoning system.

Jaccard distance (JD) measures similarity of two sets based upon the number of observa-

tions in both sets. The range is from 0 to 1 with 1 indicating the same and 0 indicating no

shared observances. The intersection is then divided by the union of observations in neither

set.

Let A and B be vectors with local model gradients, then:

JD =
|A⃗ ∩ B⃗|
|A⃗ ∪ B⃗|

(3.9)

The logit function is a quantile function in logistic distribution. Let p be the probability

and expresses the logarithm of the odds. The product produces a probability expressed as

elements of 0 and 1 mapped from −∞ to ∞. The inverse logit is the transpose of this

mapping. Let logit (p) = log(p
1−p

)forpϵ(0, 1). Then inverse logit (p) is defined:

(p) =
exp(x)

(1 + exp(x))
(3.10)

Incorporating the logits for pardoning encourages a higher divergence for values at the

two tails of similarity. This protects clients with low non-zero similarity values from Sybils

by clipping the range of outputs as an element of (0,1). We implement this two tails effect

with logits for each of the similarity measures. However, we also adapt inverse logits as a

differentiating value between honest and attacker participants as evidenced by [52].

The normal distribution (ND) or bell curve is a continuous probability distribution. Un-

derstanding the gradient distribution of a vector may be of benefit in attacker identification

and is given by:

ND(x) =
1

σ
√
2 · π

exp−1

2
(
x− µ

σ
)2 (3.11)

20

Finally, the standard deviation (SD) measures the amount of variation or dispersion for

the set of values:

SD = σ =

√∑
(xi−µ)2

N
(3.12)

The dispersion of gradients could also provide our model with some clues to the origins

of the participant. These 8 features were chosen for each participant to provide the Bidi-

rectional LSTM with information about the three dimensions of space. Next we will discuss

our methodology and implementation of the LSTM which allows for exploration of these

dimensions through the perception of the dimension of time.

3.3 Defense Methodology

The ST-DSD defense begins by accepting the batch of local gradient updates prior to the FL

IDS aggregation. ASF similarity is computed for each participant vector where participant

vector X for participant i = X⃗i. Let X⃗i ϵ [X⃗1, X⃗2, X⃗3, ...X⃗i] where i represents the number

of clients in the update batch.

Next, the pardoning algorithm from FoolsGold maps the ASF output to 0 and 1 for X⃗i.

This adoption is due to weak guarantees of similarities between attackers and honest clients.

Clients are pardoned by re-weighing X⃗i and X⃗j. The new client αi is found by inverting the

maximum similarity scores in the ϵ [0, 1]. Finally; a logit function is incorporated to push

Sybils and clients towards the two tails of divergence.

The final product is a weighted batch vector B⃗Vv, with ASF similarities of each client. Let

this weighted Vector be ⃗BVasf . ⃗BVasf should identify any vectors with significant magnitude

difference. The assumption is that this should increase the DBA hardening of the system.

We continue this same process for CS, MN, ED, JD, inverse logits, ND, and STD. However,

JD, inverse logits, ND, and STD do not incorporate the FoolsGold pardoning mechanism as

it would be counteractive. We describe each of those batched vectors as ⃗BVcs, ⃗BVmn, ⃗BVed,

⃗BVjd, ⃗BVlogits, ⃗BVnd, and ⃗BVstd. The respective features helping to identify backdoor Sybils,

byzantine attacks, or other anomalies.

21

Next, we implement a bidirectional LSTM model. LSTMs are a sequential network

that handles the vanishing and exploding gradient problems in neural networks [46]. When

working at scale, the exploding gradient problem exists where significant error gradients

accumulate causing extensive updates in the model weights. This makes the model unstable

and unable to learn. The vanishing gradient is the opposite problem. The gradients become

so small that they do not update the model and can stop any further learning.

There exists many different architectures for a learning model that could be used to

solve the spacetime problem. Recurrent Neural Networks (RNN) many-to-one architectures

solve problems where there are many inputs and one output. In this case, we have many

similarities: ASF, CS, ED, MN, JD, logits, ND and STD; but we only have one output for

each set of similarities. That output is ϵ [0, 1] for poison attacker or honest client. This

architecture lends itself well to classification problems.

LSTMs allow information to persist like human memory due to their cell structure. To

achieve human like memory, LSTMs utilize densely mapped neurons or cells. Each LSTM

cell consists of a forget gate, input gate, and output gate [7]. The forget gate decides if the

information is needed from a previous timestep or if it should be forgotten. The input gate

weighs the importance of new information. The output gate is the prediction.

LSTM cell architecture is demonstrated in Figure 3.4: LSTM Cell with Input Gates.

The black arrows represent a vector that is traveling through the neural network. The first

sigmoid layer in the bottom left is the forget gate. The sigmoid outputs to a domain of 0

and 1. If the item is 0 all of the weights are discarded. Next, the input gate uses a tahn

layer that outputs to the domain of -1 and 1. To update the cell state the tahn output

conducts a pointwise operatation multiplying it by a sigmoid layer. Finally, a similar process

is conducted to determine the output to the next cell where a pointwise tahn operation is

multiplied by another sigmoid layer.

This allows us to understand the individual neurons that allow human like memory to

persist in the network. Each vector weight has the ability to be deemed important and

carried forward. Some items are deemed unimportant and are forgotten.

22

Figure 3.4: LSTM Cell with Input Gates

While LSTM cell structure provides human like memory, the Bidirectional LSTM provides

non-human capabilities around the perception of time. We will use word prediction and a

book metaphor to explain Bidirectional LSTMs. Memory allows us to read a book and

make inferences in the current words we are reading due to the previous chapters as stored

knowledge. A Bidirectional LSTM allows us to simultaneously read that same book from the

end backwards to the word we are predicting. Thus, we are now able to use the persistent

memory of words before and after the present word to make the prediction. Let us use the

example:

[. . .In the evening the kids left the ?.]

We want to predict the question mark word. This is a low probability prediction without

more context. Imagine now, in the Bidirectional LSTM we know the sentence after our

23

prediction is:

[They bought several clothes and other items.]

This additional context gives many clues to allow a higher probability prediction. Using

a Bi-LSTM can increase the learning rate of the model at the extra computational costs of

the additional layer. However, if that Bi-LSTM model is on a cloud-based server it should

not impact the IoT network.

To put this back into the context of predicting poisoning participants, our ST-DSD

model is reading a book from past to present and future to past at the same time. That

book describes each client according to the similarities described in our framework. In this

example, ST-DSD may have read the same JD score and dispersion for three of the last five

participants. Additionally, as a Bidirectional LSTM it simultaneously reads that this JD

score and dispersion is not in the next 12 participants. This additional context allows our

model to make a prediction that the similar clients are attackers based upon these similarities

and their relationship to the mapped probability of their vectors in the logit feature.

We can examine this in Figure 3.5: Bidirectional LSTM Forward and Backward Propa-

gation. The bottom of the image contains the inputs for each timestep. Those inputs are

used in both the forward and backward propagation layers. The input is acted upon by the

LSTM cell and the output is carried forward to the next cell. The backward propagation

outputs to the activation layer which results in the prediction at the top of the figure.

At any moment in time, or timestep, the model has persistent memory from past to

present and future to present. To understand this concept better we must discuss the role

of the timesteps. Timesteps allow each set of LSTM cells to utilize the information from the

Ntimesteps previous (or future) LSTM cells. First let us assume training data and the value

Y to be the output ϵ [0, 1]. The 0 marker corresponds to a poison client and 1 belongs to an

honest client.

24

Figure 3.5: Bidirectional LSTM Forward and Backward Propagation

Let V⃗ = [⃗BVasf , ⃗BVcs, ..., Y]

Let Ntimesteps = 3

Then:

Timestep 1 = [⃗BVasf , ⃗BVcs, ..., 0]

Timestep 2 = [⃗BVasf , ⃗BVcs, ..., 0]

Timestep 3 = [⃗BVasf , ⃗BVcs, ..., Y]

Timestep 4 = [⃗BVasf , ⃗BVcs, ..., 1]

Timestep 5 = [⃗BVasf , ⃗BVcs, ..., 1]

This allows the model to examine all the information in Timesteps 1-3 with the assigned

LSTM cells in the forward propogation layer to predict the output of Timestep 3. At the

same time, the bidirectional component allows the LSTM model to read the information

25

from Timestep 5 to 3 in the backwards propogation layer to find any correlations to assist

the prediction.

The ST-DSD Deep Neural Network Architecture in Figure 3.6 depicts the implentation

for a backdoor attack with 20 Sybil participants. The Bi-LSTM model includes one neuron

for each client in the time series at the top of the figure. This layer creates the forward

and backward propagation sequence of clients. Next, the Bi-LSTM layer is mapped to

120 TimeDistributed Dense layers. TimeDistributed layers conduct convolutions with the

returned outputs on each of the sequences. Finally, this layer condenses to a single TimeDis-

tributed Dense layer to allow harvesting of the predicted output with a sigmoid activation

mapping to the set ϵ (0, 1).

Figure 3.6: ST-DSD Deep Neural Network Architecture

The final output of the ST-DSD is a vector the length of of the number of clients in the

update batch. Let that vector be S⃗t and let the prediction of each participant in the batch

update be Px. Then the output for S⃗t = [P1, P2, P3, ..., Px] for the length of the clients in

the update batch. Px is a value of 0 or 1 with 1 representing an honest participant and 0

26

being a poison attacker. When the IDS batch update aggregates the local model gradients,

the algorithm is modified to omit nodes that map to the 0 prediction from ST-DSD. This

methodology, the group of similarities, and the Bidirectional LSTM RNN is what separates

the ST-DSD defense from [10], [16], [52], [18], [15], and [5].

3.4 Contributions

Our proposed design makes several contributions to the current work on poisoning defenses.

To the best of our knowledge this is the first poisoning defense that explores the impacts of

attacks on a federated anomaly-based IDS for IoT. We contribute a unique adversarial trained

Bi-directional LSTM deep learning poisoning defense that utilizes spatial similarity and

timesteps to identify poison attackers and pardon honest clients. We design and implement

four poisoning attacks that utilize Byzantine and Sybil methodologies and are implemented

with label flipping, backdoor, and distributed backdoor models.

27

Chapter 4

EXPERIMENT DESIGN

Our experiment set up a simulated federated IoT environment and implemented an

anomaly-based IDS. We ran our tests on a host test machine built with a 32 core CPU

and 4,325 cuda core GPU on a Windows 10 operating system using Visual Studio 2022 soft-

ware. Each phase of the experiment simulated 20 clients training local models and sending

them to the server for aggregation in 30 communication rounds. The data used simulated

several attacks, honest clients did not manipulate the data. During iterations with attackers,

the local data was manipulated to achieve the desired poisoning models objective. Data was

collected during these attacks to provide an adversarial training set for our proposed defense.

Our proposed design was trained on that adversarial training set and then incorporated into

the experiment to evaluate its success.

4.1 Dataset

The dataset used for the IDSwas the UNSW Bot-IoT Dataset (Bot-IoT). Bot-IoT was created

by designing a realistic network environment in a Cyber Range Lab at UNSW Canberra.

The pcap files contain 72,000,000 records. The data selected for training originates from

multiple CSV files where 535,051 abnormal or attack packets and 30,086 normal packets

were curated. Attacks included DDoS, DoS, OS and Service Scan, Keylogging, and Data

exfiltration attacks. Two separate datasets of 23,890 and 20,923 records was retained for

testing.

From the 565,137 training packets, a second set was created to support the backdoor

attacks. The intent was to create a backdoor gap for DoS attacks. This set was reduced to

all packets that: 1) used TCP for the protocol, 2) sent to port 80, and contained 3) 1 packet

28

that was 4) less than or equal to 201 bytes. This set included 12,720 packets. This grouping

then set the TC′Attack′ for all packets that met these criteria to Normal. This poisoned

data set was then used to create Sybils following the backdoor attack methodology. Four

additional sets were created in a similar fashion for each single criterion 1-4 above. These

data sets were used in constructing DBA attacks. These collective sets were used by the

clients, backdoor Sybils, or DBA backdoor Sybils in the experimental methodology.

The dataset used to train the ST-DSD was generated by running the adverserial attacks

against the IDS using its’ training data and harvesting ST-DSD measurements. Over 120

convolutions produced 64,271 poison samples.

Table 4.1 is an example of the data contained in the training sets for the poisoning defense.

It describes the similarity features from left to right. ASF stands for the Area Sector Fools

Gold implementation of triangle area sector area similarity. FG represents FoolsGold’s cosine

similarity implementation. MN refers to Manhattan Distance. ED describes the Euclidean

Distance. Inv Log is the inverse logit of the client vector. JD is the jaccardian distance. ND

is the normalized distribution and STD represents the standard deviation of the vector. The

far right column marked ’Y’ is the label. Zero represents poison participants and 1 represents

honest clients.

ST-DSD Data Set

ASF FG MN ED Inv

Log

JD ND STD Y

0 0 1 1 0.1709 0 0 1 0

0 1 1 1 0.1709 0 0 0 0

1 0 0 0.4608 0.1714 0 0.7881 0 1

Table 4.1: ST-DSD Data Training Set Example

29

4.2 Intrusion Detection System Architecture

An anomaly-based IoT IDS using federated learning was constructed using a sequential

LSTM model with 256 timesteps in 6 layers. The LSTM stack resulted in 3,290,113 param-

eters. Table 4.2 IDS Model Summary describes the layer type, shape, and parameters.

Anomaly-Based IoT IDS

Layer Type Output Shape Number of Parameters

Dense (None, 256, 256) 7680

LSTM (None, 256, 256) 525,312

Dense (None, 256, 512) 131,584

LSTM (None, 512) 2,099,200

Dense (None, 1024) 525,312

Dense (None, 1) 1025

Total 3,290,113

Table 4.2: IDS Model Summary

Each local model was trained using one epoch on this IDS model to reduce the impact on

IoT sensor resources. Finally, the model was fit with a batch size of 16 and a validation split

of .2. This resulted in an average client training time of 7 seconds.

4.3 Threat Model

Poisoning attacks are adversarial attacks on ML models that allow the attacker to gain access

to the learning of the system [12]. This access allows them to change classifications. By

changing the classifications, the attacker misleads the training model to predict the target

label ’TL’ on any input data that the attacker has injected into the dataset [11]. These

30

attacks can be Byzantine random workers who disrupt the model or intentional Sybils who

aim to avoid detection allowing the model to converge. Poisoning attacks are comprised of

two main poisoning methods: label flipping and backdoors [51].

Label flipping attacks involve injecting crafted attack points into the training data by

flipping the target class labels. Flipping the label will cause the trained model to adjust

the original prediction boundaries. A Sybil label flip attack on an IoT IDS with two traffic

classes ϵ (’Attack’ , ’Normal’) is accomplished by intentionally crafting attack labels with

normal labels. To place Byzantine attacks into context, this same method could randomize

all labels for both classes confusing the learning rate of the model.

Backdoor attacks differ from label flipping in the difference of their target. Backdoor

attacks target specific attributes to make any class with that attribute mislabeled. The

targeted data is referred to as the ’trigger’ in a backdoor attack. Assume a DoS attack has

specific destination port, protocol, and packet size information. Then, labeling all IoT traffic

as normal that matches those criteria would be the trigger.

Label flipping attacks and backdoor attacks have one important difference. The sig-

nificant distinction between the two attacks is that the backdoor poisoning attack fits the

changed behaviors of the local model in a manner that the global model behaves normally

on untampered data while achieving a high success rate with the injected samples [47].

The authors in [47] have already modified the backdoor poisoning attack to fit a dis-

tributed attack model. This modification is known as a distributed backdoor attack or

DBA. DBAs have already become disruptive to early poisoning defenses. DBAs use addi-

tional Sybils to reduce the backdoor attack so that each Sybil targets a specific adjacent

data point in the local gradients. In the DoS attack, one Sybil could poison HTTP protocol

packets while other Sybils poison packets with less than 200 bytes. This granularity reduces

the DBA Sybil’s signature and similarity to other DBA Sybils. The final effect is that a DoS

attack will converge to a ’Normal’ label while evading current defenses.

31

4.3.1 Attack Methodology

Label flipping, backdoor, and DBA attacks were constructed with attacker participants ϵ

(1, 5, 10). For DBA attacks, each participant ϵ (1, 5, 10) is a participant group of 4 attacker

participants. The number of attackers were chosen to provide a complete range of attack

rates across the four different attacks. Label flipping and backdoor attacks include attack

rates of 5%, 25%, and 50%. The Distributed Backdoor Attacks were constructed with initial

full data set attack rates of 20%, 40%, and 60%.

The following label flipping methodology was used to design both a Byzantine attack and

a Sybil attack. In the Sybil label flipping methodology each Sybil set poisoned the target

class label, TCl, where TCl =
′Attack′. Each TCl can be described as TCl ∪ localIoTpacketx

ϵ

(′Attack′). The Sybils then flipped the label to be TCl = (′Normal′). Each Sybil generated a

local model with their updated weights. The local weights were sent back to the global model

during communication rounds. This is demonstrated in Figure 4.1: Sybil Label Flipping

Methodology. The Sybil label flipping attack was designed to create a failure of the (′Attack′)

class in the model, while still achieving global convergence.

Figure 4.1: Sybil Label Flipping Methodology

32

The Byzantine attack was crafted in the same manner with exception to the differences

described here. Each Byzantine set ϵ (1, 5, 10) randomized each localIoTpacketx
’s output label.

Thus, each TCl, where TCl =
′Attack′ or ′Normal′ was then generated through random

permutation. The intent was to craft a vector with such large distance differences that when

adopted by the model it would cause instability and significantly reduce global accuracy.

The differences are highlighted in Figure 3.3: Byzantine Label Flipping Methodology.

Figure 4.2: Byzantine Label Flipping Methodology

Comparing Figure 4.2 and 4.3, the global model at the top of both figures receives input

from the participants. Participants contain honest clients and Sybil or Byzantine attackers

depending on the implemented attack. All clients train on local data. However, the Sybil

attackers corrupt their local data such that all IoT packets that contain the Target Label

’Attack’ converge to ’Normal’ where as the Byzantines in Figure 4.3 randomize the output of

all the labels. This draws importance to the different objectives for the two separate attacks.

Next, the Backdoor methodology was constructed by creating Sybil participants ϵ (1, 5, 10).

Each Sybil set targeted the same set of features ∪ localIoTpacketx
. That set of features were the

trigger deemed to model a DoS attack. To construct the trigger let Local Data be described:

33

LD = {localIoTpacket1
, localIoTpacket2

, · · · , localIoTpacketi
}

Next, let localIoTpacketi
= | ⃗localIoTpacketi

|; then:

| ⃗localIoTpacketi
| = {feature1, feature2, · · · , featurex}

The IoT IDS global model assumes that for each featurex of localIoTpacketx
ϵ (′Attack′

∪ ′Normal′). Let the attack trigger = featuretarget and be described as featuretarget ϵ

{feature1, feature2, · · · , featurex}.

Thus, the goal of the backdoor Sybil is to change the convergence of the featuretarget of

localIoTpacketx
ϵ (′Normal′). This also implies the inverse that featuretarget of localIoTpacketx

/∈ (′Attack′) for the DoS trigger. Figure 4.3: Sybil Backdoor Methodology removes the

abstraction of this methodology and describes the selected features for the trigger.

Figure 4.3: sybil Backdoor Methodology

Each Sybil in the backdoor attack contained a set of features from their packet data to

34

change the convergence of the global model to Normal. Those features were: 1) TCP protocol

packets, 2) sent to port 80, 3) less than 201 bytes, and 4) consisting of 1 packet sent. This is

considered the ’trigger’ for the attackers. Each Sybil in the backdoor set changed the labels

of all LD that met all of those four criteria. After training the local model with the corrupted

data, the backdoor Sybil sent the updated weights to the global model.

The weakness of the above attack is that many Sybils are needed to affect the global

weights when attacking a model at scale. That creates a very similar gradient for all backdoor

Sybils and increases their ability to be identified.

Figure 4.4: Sybil DBA Methodology

That weakness led to DBAs which avoid presenting a gradient signature. The DBA

accomplishes this by separating each featurex ϵ (featuretarget) to be attacked by each Sybil

participant group ϵ (1, 5, 10). To again place this into simple terms, each of the features for

35

the backdoor attack –TCP, port 80, 201 bytes, and one packet; contained a set of Sybils

targeting the convergence of just that feature or sub-trigger. The global trigger was still

packets resembling DoS attacks demonstrated in Figure 4.4: Sybil DBA Methodology.

The DBA figure contains 4 separate sub-triggers each labeled as Trigger 1, 2, 3, and

4. Those sub-triggers correspond with one feature from the backdoor attack. In this case

Trigger 1 are all TCP protocol packets. Trigger 2 is all packets sent to Port 80. Trigger 3

is all packets with a size less than 201 bytes. Finally, Trigger 4 are all packets with only

one packet sent. Each Trigger contains it own set of Sybil attackers ϵ (1, 5, 10) attempting

to affect convergence of that data point. Each Sybil set attempts to change the TL for

their trigger from ’Attack’ to ’Normal’. Collectively the Sybil participant groups sum to

ϵ (16, 80, 160) and achieve convergence on the Global DoS trigger when all 4 sub-triggers

converge.

This attack methodology assumes the attacker has white box knowledge of the IoT IDS

data processing. This assumption aims to focus this work on IDS and poisoning hardening.

Numerous works focus on implementation of poisoning attacks without knowledge [42], [51],

[28], [33]. Future work to train the defense model should include those attacks.

4.4 Experiment Methodology

The experiment was conducted in a python environment utilizing cudaNN, TensorFlow-GPU,

torch, and Keras packages. Four major steps were conducted: 1) IDS baseline; 2) Poison

Data Generation; 3) Poison Training; 4) and ST-DSD Testing. Steps one, two, and four

exercised the main code base with modifications to allow outputs that were desired for each

step.

First, the IDS baseline was conducted in three iterations. The first test run demonstrated

the IDS without any defense or attackers to produce baseline accuracy. The second experi-

ment executed the four attack methodologies with each set of Byzantine or Sybil participants

and no defense to demonstrate the attack impacts. During these attacks the code was mod-

ified to extract the similarity samples needed for adversarial training the ST-DSD model in

36

step 3. The third iteration tested the original FoolsGold implementation and the modified

ASF defense to demonstrate results against each attack with all attacker permutations. The

main program for all three experiments executed 2 for loops with an implicit 3rd for loop.

The first and outer global loop represented communication for each round to the global

IDS model. This loop was conducted 30 times to simulate multiple federated updates from

IoT participants. Prior to this outer global loop, all IDS data had been pre-processed,

trained, and batched to the corresponding clients and attackers according to test parameters

for that iteration.

Next, the second and inner client IDS loop created the local IDS models. It set the initial

weights according to the global IDS model. Then this loop trained the local IDS models on

each client’s data individually and adjusted the local model weights.

The implicit 3rd for loop was the local epoch conducted creating the local weights. The

new weights were scaled and then appended to the local weight list for each updated batch

of clients. The program then moved back to the outer loop and summed the local weights

from the list. During step one, iteration three, FoolsGold and ASF implementations were

demonstrated prior to aggregation. In the fourth step, the ST-DSD component integrated

prior to the aggregation of weights to make it’s predictions and output it’s mapped vector.

Step three was conducted separately, training the ST-DSD model on the generated attack

data. Once the training was complete, the best epoch model was saved as a complete

Tensorflow model that can be loaded into the IDS to complete step four. This allows ST-

DSD to be a modular component added onto other federated learning modules for testing.

37

Chapter 5

EVALUATION

5.1 Evaluation Metrics

To understand our defense in context of current studies we compare our results to FoolsGold

and ASF. First, we describe Byzantine and Sybil resilience through model convergence.

Second, we analyze the precision of each model. Then, we discuss the poison rate and it’s

effect on a model’s accuracy. Finally, we are testing models in the scope of intrusion detection

and thus we will explore accuracy metrics in relation to these defense descriptions.

Convergence

Model error loss per epoch, or training round, determines the convergence of a system with

different attack rates. Over time the loss of a model demonstrates a tendency of behavior.

That tendency demonstrates the model has achieved it’s capacity to learn. Loss can be used

to explain overfitting and underfitting the model when comparing training loss and validation

loss. However, this metric can be important in regards to attacks. Convergence describes a

model’s resilience during attack. We define poison resilience by achieving model convergence

with 50% attackers.

Precision

Precision for this study consisted of two classes. Precision was measured for poison attackers

and honest clients. Client precision is described as the percentage of clients correctly identi-

fied. Attacker precision is the percentage of poisoners identified as attackers. This metric is

important because removal of honest clients, or allowing attackers to participate with their

weights, has a negative impact on a federated learning model. Any defense needs to ensure

38

that both components of precision are as close to 1 as possible. This metric increases our

depth of understanding why a particular defense struggled in a certain setting.

Poison Rate

The poison rate is the percent of model weights that were created by poison attackers. Poison

rate should not be confused with attack rate. The attack rate is the total number of attackers

attempting to poison a model. If a poison defense prevents an attacker from poisoning the

model, that attackers data is not summed into the poison weight. Thus, in a model with all

attackers and no clients, but a defense that identified all the attackers the attack rate would

be 100% and the poison rate would be 0%. The poison rate shows the impact of an attack

on the model accuracy.

5.2 Results

IDS Base Line

The IDS baseline conducted packet detection with no attackers and no defense to determine

attack and normal packet traffic. There were 23,890 IoT packets examined between 20

clients. 9490 packets were benign traffic and 14400 were attacks. 7 different protocols were

included: arp(467), icmp(12), igmp(2), ipv6-icmp(88), rarp(1), tcp(8447), and udp(14,873).

The baseline was conducted in 33 communication rounds to provide additional information at

the tail of the results. This led to 660 aggregated weights that updated the global model on

the 33 iterations. One problem that was encountered later in the experiment was the negative

impact of removing attackers on the neural network architecture for the IDS. The impact

of removing clients demonstrated the fragility of neural networks in a small experiment and

will be discussed under challenges.

In figure 5.1: IDS Baseline Accuracy with no Attacks we illustrate accuracy on the Y-axis

through the lens of communication rounds on the X-axis. The graph begins the Y-axis at

0.55 to exclude data points not included in the results. The X-axis begins at 0 and ends at

39

32 representing the 33 communication cycles. The initial round demonstrates an accuracy

of 59% and quickly climbs to 94.9% and beyond in the next rounds.

Figure 5.1: IDS Baseline Accuracy with no Attacks

In the 23rd round our anomaly-based IDS using FL for IoT demonstrates a maximum

accuracy of 98.4%. The average accuracy over 33 rounds is 94.8%. The median accuracy

of all the scores is 98.0%. We define IDS accuracy convergence as the median of last 15

communication rounds to allow an acceptable ramp up time for the federated model. The

accuracy convergence is visually located at the point of inflection depicted in the curve at

communication round 18. Using the last 15 rounds, our baseline accuracy convergence is

98.2%.

40

5.2.1 ST-DSD Model Convergence

Figure 5.2: ST-DSD Model Accuracy and Loss depicts the model loss on the left and accuracy

on the right. The orange lines represent validation metrics and blue line represent training

metrics. The Y-axis is accuracy or loss depending on the left side or right side of the figure.

The X-axis lays out our training rounds. Our model has a loss convergence of 0.1 and an

accuracy convergence of 0.99. We allow for 10,000 epochs to train the model. However, to

prevent over fitting we save the best epoch model, and use a patience of 1,000 epochs. Once

1,000 epochs has been reached without improving loss, the model is done training and it

loads the best epoch model. By using TimeDistributed ragged sequencing layers we reduced

our convergence training from 15,000 epochs to 350.

Figure 5.2: ST-DSD Model Accuracy and Loss

Poisoning Attacks

We examine the impact on the IDS baseline accuracy of 98.2% to measure the effectiveness

of each attack methodology across different attack rates of Byzantine and Sybils ϵ (1, 5, 10).

Note that for the structure of DBA attacks, the participation is ϵ (4, 8, 12). The number of

honest clients was scaled to keep the batches to 20 clients. Thus, clients were ϵ (19, 15, 10)

41

with exclusion for DBA at ϵ (16, 12, 8). We discuss the results in Figure 5.3 IDS Accuracy

Impacts from Various Attacks in the section below. The Y-axis displays the accuracy from

50% to 100% and the X-axis shows our different attacks. For each attack we show the impact

with 1, 5, or 10 attackers.

Our Byzantine attack was designed to cause model convergence failure. These attacks

reduced the baseline accuracy to 59.1%. The 39.0% reduction in accuracy is considered a

strong success. The attack was capable of affecting the global model convergence, which

is a Byzantine end state. The backdoor Sybil attacks allowed the global model to achieve

IDS Accuracy Impacts from Various Attacks

Attack Rate Byzantine Label Flip Backdoor DBA

5% 74.5% 83.3% 98.3% 99%

10% 64.4% 78.4% 98.2% 93.2%

50% 59.1% 64.1% 97.1% 89.1%

Table 5.1: IDS Accuracy Impacts from Various Attacks

convergence with both 1 and 5 Sybil attackers. The IDS baseline accuracy for all three

attack rates was 98.3%, 98.2%, and 97.1%. The implications of these results is that at a 50%

participant rate the attack has a 1.1% influence on the overall accuracy of the model. As an

attacker, this methodology needs to be examined in greater detail to avoid detection.

The DBA attacks demonstrated similar impacts on the global model. At a 4 attackers we

see the global model accuracy is 99.0%. However, the 8 and 12 attacker sets have significant

impacts at 9.2% and 89.1% resulting in a 5% and 9% impact on global accuracy. These

results could be caused due to the low scale of participants. The small size reduces the data

ingestion of our neural network and adds a fragility to the model even with client update

scaling.

From Figure 5.3 we can make the following assertions. First, the Byzantine attack graph-

42

ically demonstrates the model failure. Second, the label flip attack has a greater impact on

the global model than we desired. A Sybil poisoning attack attempts to avoid detection

by not impacting the global convergence. Third, the backdoor attack demonstrates a near

perfect Sybil attack by not reducing the IDS accuracy. Finally, the DBA begins to show

more impact on the global model at higher attacker rates.

5.2.2 Model Convergence

We can discuss convergence through the lens of both loss and accuracy. The individual

clients demonstrated the greatest depiction of convergence through comparison. In figure 5.3:

Model Convergence Demonstrated with both Loss and Accuracy we examine the IDS model

convergence for an honest client over 8 epochs. The left figure draws the loss measurement

over training cycles and the right graphic represents accuracy over the same periods. The

orange lines represent validation data and the blue lines represent testing data. The left side,

or Y-axis is marked in tenths representing either loss or accuracy. The X-axis represents 8

epoch training cycles. The loss lines are smooth and move from the top left to the bottom

Figure 5.3: Model Convergence Demonstrated with both Loss and Accuracy

right, inverse of the accuracy chart. Notice that around epoch 7 in both figures there is an

inflection point. This point could be considered convergence if the model stays near this

level. The early callback function in Keras removes the additional data points to the right

43

of those lines that confirms these data levels stabilizing. The convergence for model loss

is approximately 0.1 and accuracy is 0.98. Next, we examine a Byzantine poisoned model

failing to meet convergence in Figure 5.4.

Figure 5.4: Byzantine Model Convergence Failure

The validation loss starts at 0.96 and varies greatly over the course of the epochs with

a low reading of 0.62. Training loss has less variance but at 0.65 fails to meet the 0.1

convergence of the honest client in Figure 5.3. Accuracy shows a similar scenario. Validation

accuracy is extremely low, and training accuracy at 0.69 fails to come within terms of the

0.98 convergence.

These convergence depictions are important because the failure identifies the success of

the attack. Based on Figure 5.4 and 5.5 we can state that our implemented Byzantine attack

causes a failure of the validation loss convergence by 51%. Additionally, we state that the

accuracy convergence of the model is negatively impacted by 25%. This will allow us to

determine the amount of impact our defense has in hardening the system against Byzantine

attacks.

Poison Rate

In Table 5.2: Poison Rate Effects on Accuracy we highlight the reduction in a models

accuracy as a correlation with the increase in the poison rate. Both attacks were taken

44

with a 50% attack rate. The table reflects the data from the 4Th communication round.

This allows us to compare the FoolsGold (FG) defense against ST-DSD. The FG Attacker

Poison Rate Effects on Accuracy

Defense Attack Rate Poison Rate IDS Accuracy

FoolsGold 50 33 87

ST-DSD 50 0 96

Difference 0 33 9

Table 5.2: Poison rate Effects on Accuracy

precision was .5. That meant that 33% of the model weights were poisoned with DBA

data. The effect was a reduction of 23% accuracy depicted by the blue IDS pie circling to

87% accuracy. In contrast,ST-DSD demonstrated a complete hardening at epoch 4. This

achieved a 0% poison rate with a Sybil Attacker precision of 1 that corresponded with an

IDS 96% accuracy for the round.

Poisoning Defense

We highlight our poisoning defense results by discussing the attack rate >= 50%. We chose

this to demonstrate the resilience of the defenses. We include the precision of attackers and

clients across the different attacks and defenses to provide comparison of results. We begin

our discussion with Byzantine attacks and end with DBA.

In Figure 5.5: Byzantine precision Comparison at 50% >= Attack Rate. The Y-axis

represents the total percentage of participants identified with 1 being the greatest. Across the

X-axis each defense: ASF, FG, and ST-DSD demonstrate bar graphs of Attacker precision

and Client precision. Holistically, the chart depicts a scarcity on the left side with fuller bars

on the right.

During the Byzantine attack the ASF methodology had the poorest attacker identification

45

Figure 5.5: Byzantine Defense precision Comparison at 50% >= Attack Rate

with an attacker precision of 88.4% as depicted in Figure 5.5: Byzantine Defense Precision

Comparison at 50% >= attack rate. FG had a decidedly better attacker precision at 96.4%.

However, ST-DSD achieved the highest precision at 99.6%. The reason we examine precision

is that inclusion of all honest clients is important for the IDS accuracy. We demonstrate the

Byzantine client precision by defense in order ASF, FG, and ST: to be 97.3%, 86.8%, and

99%.

Next, the label flip attack in Figure 5.6 demonstrates comparable results from all de-

fenses. The most worthwhile comparison was that ASF had a marked improvement on client

precision in the label flip attack compared to the Byzantine attack. This indicates that

ASF will handle Byzantine attacks poorly and is better designed to defend against Sybil

attacks. FG client precision increased marginally, but was counteracted by a slight decrease

in attacker precision. ST-DSD demonstrated both precision at 99%.

46

Figure 5.6: Label FLip Defense Precision Comparison at 50% >= Attack Rate

In Figure 5.7 the backdoor attack proved to more challenging for both ASF and FG.

The backdoor attack rendered ASF statistically ineffective with a client precision at 74%

and an attacker precision at 69%. FG demonstrated both spectrum’s with an attacker

precision of 100% and a client precision of 17.7%. FG was implemented to achieve attacker

identification in backdoor attacks. These strong results reflect what is expected. What

was not expected was the failure of the pardoning algorithm to prevent clients from being

mislabeled as attackers. ST-DSD remained consistent with a client precision of 99.3% and

100% attacker precision.

The most evolved attack, the DBA proved to be the most challenging for all three defenses.

Due to that challenge, we depict a collective precision of all three defenses against each of

the attacks and invert the bar graph in Figure 5.8. This allows us to demonstrate how the

47

Figure 5.7: Backdoor Defense precision Comparison at 50% >= Attack Rate

DBA erodes precision compared to the other attacks.

First, the Y-axis represent the percentage out the 6 precision for the 3 defenses. A score

of 6 is then mapped to 100% identification. A score of 0% maps to 0% and is not desired.

Across the X-axis we follow the combined defenses successful identification rate across the

Byzantine, label flip, backdoor, and then DBA attack. The figure depicts that Byzantine and

label flip attacks are collectively identified with great success near 6. However, we notice that

the percentage of precision for all three defenses slopes as we get to the backdoor attack at

4.5. Finally, the DBA presents the worst score 3.8%. One graphically important conclusion

48

is that the top two ST-DSD bars remain consistent in their width across all the attacks.

This will be discussed next as we compare individual defenses.

Figure 5.8: Collective Precision at 50% >= Attack Rate

We compare the individual defenses in Figure 5.9. The DBA attack reduced ASF and

FG precision for clients and attackers to 71% and 28% for ASF, and 5% and 81% for FG.

ST-DSD maintained a statistical significance with a client precision of 97% and an attacker

precision of 94%.

We notice that ASF and FG demonstrate inverse relationships with client and attacker

precision in the more challenging attacks. This may explain why ASF demonstrated higher

IDS accuracy scores, as it included more honest clients. ST-DSD surpassed both FG and

ASF in Byzantine label flip, Sybil label flip, Sybil Backdoor, and Sybil DBA attacks across

all spectrum of attack rates.

49

Figure 5.9: Individual Defense Precision against DBA at 50% >= Attack Rate

5.2.3 Problems with Results

Class distribution caused challenges for the IDS. IDS data contained 5% normal packets.

To overcome these challenges class weights were used to increase the value of the under-

represented samples. A second challenge was presented with architectural limitations of

TimeDistributed dense layers. A TimeDistributed layer in this architecture is created to be

a many-to-one RNN. Each client may send an unknown amount of packets. This is an issue

for constructing a model with TimeDistributed layers. Implementing a batching protocol to

standardize packet set size from clients would allow TimeDistributed classification.

The most significant challenge to the IDS was the fragility of the neural networks to

removing data in the evaluations. Despite the near perfect removal of attackers, the IDS

continually demonstrated lower accuracy as the sample set moved from 20 participants down

50

to 8. See Figure 5.11 IDS Diminished Accuracy which depicts the accuracy scores from the

ST-DSD evaluations. Accuracy of the IDS is depicted on the Y-axis begining at 80%. The

number of clients is depicted on the X-axis. What is demonstrated is that all attacks, despite

near perfect attacker removal slow the learning rate of the model as there are less participants.

A larger sample set should be evaluated to see if the impacts can be reduced.

Figure 5.10: IDS Diminished Accuracy

The Bot-Iot data set demonstrates the classic attack phases. The sequence of packets

begins with reconnaissance and moves to other attacks. However, the data lacks non-attack

packets. To create a manageable data set with a limited sample of normal attack packets

that sequencing was disrupted. Harvesting the data without disrupting the sequence and

demonstrating normal packet distributions would be beneficial for training the model.

The ST-DSD requires significant data. Data from various permutations of attacks needs

to be generated to increase the robustness of the model. Further, high convolution rates

and GPU usage over time caused the adversarial trained data at times to run into integer

overflows and NaNs (Not a Number). These issues disrupted the training cycles or had a

byzantine effect by adding noise to the data. Manual data cleaning and inline functions

51

were used to reduce the noise of data being displaced to the mean. However, this reduced

the amount of data used for the experiment and challenged the architectural design of the

poisoning model. To over come this, fixed participant sets of 20 were used to ensure the

greatest amount of data for most experiments. Future work should generate enough data

samples that a singular model can be robust enough to handle different participant lengths.

5.2.4 Implications

ST-DSD demonstrated state-of-the-art results. There is high evidence and confidence that

poison participation can be identified using the spacetime manifold. ST-DSD demonstrated

that earlier defenses did not frame the problem correctly and therefore missed out on an entire

dimension of identification. However, those early defenses provided the features needed to

ensure that ST-DSD incorporated the Byzantine resilience of Krum, Sybil identification of

Fung’s FoolsGold, and the DBA hardening through better precision by Birchman’s ASF.

This deep learning RNN managed to extract the strengths of the earlier systems into one.

ST-DSD has implications beyond the IDS. The modular architecture of ST-DSD can be

incorporated into any IDS for IoT in a federated environment. As a singular component,

most systems can be easily modified for adaptation. Restructuring the aggregation algorithm

to only accept clients that are mapped to the ST-DSD output is all that is needed.

The four poisoning attacks demonstrated a successful implementation of poisoning attacks

against a federated IDS. Crafting attacks to allow backdoors for more conventional attacks

such as DoS provides a realistic example for how poisoning can be used as a tool to achieve

greater means for an attacker. However, these attacks should be reconstructed to be black

box attacks without knowledge of the model. Then, these attacks should be ran to generate

adversarial trained data for the ST-DSD.

The slight degradation in the DBA 12 Sybil attack may be resolved by the inclusion of a

new feature. To detect the magnitude difference of a single steps weight may be the key to

identifying the missing attackers. We propose measuring the greatest magnitude difference

between a clients steps, and then created another vector of the greatest magnitude difference

52

for each client of an update.

Finally, Additional work should be done to hash the identity of clients and incorporate a

client history into the ST-DSD equation. This may help to increase a fairness of the federate

model as clients may move in and out of a network. This would allow a greater extraction of

information from the time dimension. Further comparison work can be done to examine the

benefit of storing multiple modules that have been trained specifically for various participant

lengths versus creating a master module for all lengths.

53

Chapter 6

CONCLUSION

We presented a unique similarity poisoning defense model that used triangle similarity,

sector similarity, cosine similarity, Euclidean Distance, Manhattan Distance, Jaccard Sim-

ilarity, inverse logits, normal distribution, and standard deviation to provide resistance to

poisoning attacks. We modeled a SOHO IoT network and created Byzantine and Sybil IoT

label-flip, backdoor and distributed backdoor poisoning attacks. We evaluated a baseline

resistance by measuring global model convergence to a median of the last 15 communication

rounds. We tested standard defenses adapted to an IDS for IoT. FoolsGold and ASF de-

fense models were then used to make comparison to ST-DSD. Our defense was constructed

using an RNN many-to-one architecture with bidirectional Long-Short Term Memory and

TimeDistributed layers to allow a ragged sequence classification using the spactime mani-

fold. We demonstrated that our state-of-the-art poisoning defense could achieve a statistical

significance hardening against poisoning attacks by increasing IDS model accuracy, loss con-

vergence, and precision across the spectrum of attacks and attackers with non-IID. Our Sim-

ilarity defense achieved 99.9% attacker and honest client identification and laid the ground

work for a new line of poisoning defense.

54

BIBLIOGRAPHY

[1] H. Alqarni, W. Alnahari, and M. T. Quasim. Internet of things (iot) security re-
quirements: Issues related to sensors. 2021 National Computing Colleges Conference
(NCCC), pages 1–6, Mar. 2021.

[2] L. Andrade-Arenas and J. A. Ramos-Romero. Analysis and prevention of iot vulnera-
bilities by implementing a lightweight ad-iot intrusion detection system model. in 2020
IEEE Congreso Bienal de Argentina (ARGENCON), pages 1–4, Dec. 2020.

[3] E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, and P. Burnap. A super-
vised intrusion detection system for smart home iot devices. IEEE Internet Things J.,
6(5):9042–9053, Oct. 2019.

[4] N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi. Mitigating poisoning attacks on
machine learning models: A data provenance based approach. in Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, pages 103–110, Nov. 2017.

[5] B. Birchman. Mitigating poisoning attacks against federated learning defense algo-
rithms.

[6] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. page 11.

[7] H. V. K. S. Buddana, S. S. Kaushik, Pvs. Manogna, and S. K. P.S. Word level lstm
and recurrent neural network for automatic text generation. in 2021 International
Conference on Computer Communication and Informatics (ICCCI), pages 1–4, Jan.
2021.

[8] D. Cao, S. Chang, Z. Lin, G. Liu, and D. Sun. Understanding distributed poisoning
attack in federated learning. in 2019 IEEE 25th International Conference on Parallel
and Distributed Systems (ICPADS), pages 233–239, Dec. 2019.

[9] G. W. Cassales, H. Senger, E. R. de Faria, and A. Bifet. Idsa-iot: An intrusion detection
system architecture for iot networks. in 2019 IEEE Symposium on Computers and
Communications (ISCC), pages 1–7, Jun. 2019.

55

[10] L.-Y Chen, T.-C. Chiu, A.-C. Pang, and L.-C. Cheng. Fedequal: Defending model
poisoning attacks in heterogeneous federated learning. in 2021 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–6, Dec. 2021.

[11] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks on deep
learning systems using data poisoning. http://arxiv.org/abs/1712.05526, Dec. 2017.
Accessed: Mar. 15, 2022.

[12] J. Clements and Y. Lao. Backdoor attacks on neural network operations. in 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP), Nov. 2018.

[13] P. M. Figliola. The internet of things (iot): An overview. Internet Things, page 3.

[14] C. Fung, C. J. M. Yoon, and I. Beschastnikh. The limitations of federated learning in
sybil settings. page 16.

[15] C. Fung, C. J. M. Yoon, and I. Beschastnikh. Mitigating sybils in federated learning
poisoning. http://arxiv.org/abs/1808, Jul. 2020. Accessed: Mar. 17, 2022.

[16] Z. Hammoudeh and D. Lowd. Simple, attack-agnostic defense against targeted training
set attacks using cosine similarity. page 15.

[17] A. Harit, A. Ezzati, and R. Elharti. Internet of things security: challenges and perspec-
tives. Proceedings of the Second International Conference on Internet of things, Data
and Cloud Computing, pages 1–8, Mar. 2017.

[18] A. Heidarian and M. J. Dinneen. A hybrid geometric approach for measuring similarity
level among documents and document clustering. in 2016 IEEE Second International
Conference on Big Data Computing Service and Applications (BigDataService), pages
142–151, Mar. 2016.

[19] H. Hellstrom, V. Fodor, and C. Fischione. Wireless for machine learning. page 21.

[20] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. Survey of intrusion detection
systems: techniques, datasets and challenges. Cybersecurity, 2:20, Dec. 2019.

[21] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. http://arxiv.org/abs/1610.
02527, Oct 2016. Accessed: Mar. 13, 2022.

[22] Y. Li, G. Hu, X. Liu, and Z. Ying. Cross the chasm: Scalable privacy-preserving
federated learning against poisoning attack. in 2021 18th International Conference on
Privacy, Security and Trust (PST), pages 1–5, Dec. 2021.

http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1808
http://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1610.02527

56

[23] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu. Privacy-enhanced federated
learning against poisoning adversaries. IEEE Trans. Inf. Forensics Secur., 16:4574–
4588, 2021.

[24] Z. Liu, N. Thapa, A. Shaver, K. Roy, X. Yuan, and S. Khorsandroo. Anomaly detec-
tion on iot network intrusion using machine learning. in 2020 International Confer-
ence on Artificial Intelligence, Big Data, Computing and Data Communication Systems
(icABCD), pages 1–5, Aug. 2020.

[25] S. K. Lo, Q. Lu, C. Wang, H.-Y. Paik, and L. Zhu. A systematic literature review on
federated machine learning: From a software engineering perspective. ACM Comput.
Surv., 54(5):1–39, Jun. 2021.

[26] L. Lyu. Privacy and robustness in federated learning: Attacks and defenses. http:

//arxiv.org/abs/2012.06337, Jan. 2022. Accessed: May. 04, 2022.

[27] Z. Ma, J. Ma, Y. Miao, X. Liu, K.-K. R. Choo, and R. Deng. Pocket diagnosis: Secure
federated learning against poisoning attack in the cloud. IEEE Trans. Serv. Comput.

[28] M. Melis, A. Demontis, M. Pintor, A. Sotgiu, and B. Biggio. secml: A python library
for secure and explainable machine learning. Dec. 2019. Accessed: Apr. 04, 2022.

[29] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Srivastava.
Federated learning-based anomaly detection for iot security attacks. IEEE Internet
Things J., page 1, 2021.

[30] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R. Sadeghi.
DÏot: A federated self-learning anomaly detection system for iot. IEEE 39th Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 756–767, Jul.
2019.

[31] J. P. Nzabahimana. Analysis of security and privacy challenges in internet of things.
IEEE 9th International Conference on Dependable Systems, Services and Technologies
(DESSERT), pages 175–178, May 2018.

[32] S. Otoum, N. Guizani, and H. Mouftah. Federated reinforcement learning-supported
ids for iot-steered healthcare systems. in ICC 2021 - IEEE International Conference on
Communications, pages 1–6, Jun. 2021.

[33] P. Papadopoulos, O. Thornewill von Essen, N. Pitropakis, C. Chrysoulas, A. Mylonas,
and W. J. Buchanan. Launching adversarial attacks against network intrusion detection
systems for iot. J. Cybersecurity Priv., 1(2):252–273, Apr. 2021.

http://arxiv.org/abs/2012.06337
http://arxiv.org/abs/2012.06337

57

[34] A. Patcha and J. M. Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Netw., 51(12):3448–3470, Aug. 2007.

[35] K. Pillutla, S. M. Kakade, and Z. Harchaoui. Robust aggregation for federated learning.
Jan. 2022. Accessed: Mar. 17, 2022.

[36] R. Roman, J. Zhou, and J. Lopez. On the features and challenges of security and privacy
in distributed internet of things. Comput. Netw., 57(10):2266–2279, Jul. 2013.

[37] H. Saadat, A. Aboumadi, A. Mohamed, A. Erbad, and M. Guizani. Hierarchical fed-
erated learning for collaborative ids in iot applications. in 2021 10th Mediterranean
Conference on Embedded Computing (MECO), pages 1–6, Jun. 2021.

[38] H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri. A lightweight anomaly detection tech-
nique for low-resource iot devices: A game-theoretic methodology. the IEEE Interna-
tional Conference on Communications (ICC), pages 1–6, May 2016.

[39] A. K. Singh, A. Blanco-Justicia, J. Domingo-Ferrer, D. Sanchez, and D. Rebollo-
Monedero. Fair detection of poisoning attacks in federated learning. in 2020 IEEE
32nd International Conference on Tools with Artificial Intelligence (ICTAI), pages 224–
229, Nov. 2020.

[40] Dr. S. Smys, Dr. Abul Basar, , and Dr. Haoxiang Wang. Hybrid intrusion detection
system for internet of things (iot). J. ISMAC, 2(4):190–199, Sep. 2020.

[41] S. S. Swarna Sugi and S. R. Ratna. Investigation of machine learning techniques in intru-
sion detection system for iot network,. 2020 3rd International Conference on Intelligent
Sustainable Systems (ICISS), pages 1164–1167, Dec. 2020.

[42] G. Sun, Y. Cong, J. Dong, Q. Wang, L. Lyu, and J. Liu. Data poisoning attacks on
federated machine learning. IEEE Internet Things J., page 1, 2021.

[43] I. Ullah and Q. H. Mahmoud. A two-level hybrid model for anomalous activity de-
tection in iot networks. 16th IEEE Annual Consumer Communications & Networking
Conference (CCNC), pages 1–6, Jan. 2019.

[44] J. W. Ulvila and J. E. Gaffney. Evaluation of intrusion detection systems. J. Res. Natl.
Inst. Stand. Technol., 108(6):453, Nov. 2003.

[45] A. Uprety and D. B. Rawat. Mitigating poisoning attack in federated learning. in 2021
IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–7, Dec. 2021.

58

[46] Q. Wang, R.-Q. Peng, J.-Q. Wang, Z. Li, and H.-B. Qu. Newlstm: An optimized long
short-term memory language model for sequence prediction. IEEE Access, 8:65395–
65401, 2020.

[47] C. Xie, K. Huang, P.-Y. Chen, and B. Li. Dba: Distributed backdoor attacks against
federated learning. page 19, 2020.

[48] X. Xingmei, Z. Jing, and W. He. Research on the basic characteristics, the key tech-
nologies, the network architecture and security problems of the internet of things. Pro-
ceedings of 2013 3rd International Conference on Computer Science and Network Tech-
nology, pages 825—-828, Oct. 2013.

[49] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol., 10(2):1–19, Feb. 2019.

[50] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a trillion (unfixable) flaws
on a billion devices: Rethinking network security for the internet-of-things. Proceedings
of the 14th ACM Workshop on Hot Topics in Networks, pages 1–7, Nov. 2015.

[51] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu. Poisongan: Generative
poisoning attacks against federated learning in edge computing systems. IEEE Internet
Things J., pages 3310–3322, Mar. 2021.

[52] J. Zhang, G. Chunpeng, F. Hu, and B. Chen. Robustfl: Robust federated learning
against poisoning attacks in industrial iot systems. IEEE Trans. Ind. Inform., 2021.

59

VITA

Christian Dunham is Software Engineer for Nordstrom. He participates as a security

advocate during the design review process. He welcomes your comments to dunhamc@uw.edu.

	List of Figures
	List of Tables
	Glossary
	Introduction
	Background

	Related Works
	Poisoning Attacks and Defense
	Similarity Defenses

	Proposed Design
	Motivation
	Defense Model
	Defense Methodology
	Contributions

	Experiment Design
	Dataset
	Intrusion Detection System Architecture
	Threat Model
	Experiment Methodology

	Evaluation
	Evaluation Metrics
	Results

	Conclusion
	Bibliography

